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Liquid–liquid wetting failure is investigated in a two-dimensional Couette system with
two immiscible fluids of arbitrary viscosity. The problem is solved exactly using a
sharp interface treatment of hydrodynamics (lubrication theory) as a function of the
control parameters – capillary number, viscosity ratio and separation of scale – i.e.
the slip length versus the macroscopic size of the system. The transition at a critical
capillary number, from a stationary to a non-stationary interface, is studied while
changing the control parameters. Comparisons with similar existing analyses for other
geometries, such as the Landau–Levich problem, are also carried out. A numerical
method of analysis is also presented, based on diffuse interface models obtained
from multiphase extensions of the lattice Boltzmann equation. Sharp interface and
diffuse interface models are quantitatively compared, indicating the correct limit of
applicability of the diffuse interface models.

1. Introduction
Despite many years of research, the physics of moving contact lines (De Gennes

1985; Oron, Davis & Bankoff 1997; Blake 2006) is still not completely understood.
This lack of understanding stems from different factors. Dynamical wetting operates
on scales extending from the macroscopic to the molecular. At those scales, given the
small Reynolds numbers achieved in such motion, viscous forces are balanced with
surface tension effects (Voinov 1976; De Gennes 1985; Cox 1986). A dimensionless
measure of this balance is provided by the capillary number Ca = μU/σ , comparing
the viscous term at the contact line ηU with the surface tension σ , where η denotes
the liquid viscosity and U the contact line velocity. Liquid motion at finite capillary
numbers induces changes in the shape of the interface, and the resulting macroscopic
dynamic angle θM (Ca) is different from its static equilibrium counterpart. Within this
context, the main issue in contact line research is to relate the macroscopic angle to
the inner physics, with particular emphasis on the mechanisms removing the small-
scale singularities (Voinov 1976; Cox 1986; De Gennes 1986). In fact, it is well known
that the viscous stress diverges at the contact line if some physical mechanism
is not introduced to remove the singularity (Dussan 1979; De Gennes 1986;
Pismen & Pomeau 2000). To overcome this problem, numerous proposals have been
made (Huh & Scriven 1971; Voinov 1976; Hocking & Rivers 1982; De Gennes 1985;
Cox 1986; Dussan, Rame & Garoff 1991), all of them leading to the introduction of
a small-length-scale parameter �s used to remove the viscous singularity. An example
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is provided by the slip length at the boundaries, where this small-scale parameter is
related to the presence of a finite slip (Huh & Scriven 1971; Cox 1986). Also, other
mechanisms such as intermolecular forces (De Gennes 1986; Jacqmin 2000; Pismen
& Pomeau 2000; Ding & Spelt 2007) in the immediate vicinity of the contact line can
be considered.

Once the small-scale singularity is removed, the macroscopic angle emerges as a
function of the capillary number θM (Ca). Although the explicit forms may clearly
depend on the specific model used to remove the singularity, the common feature is
that the small capillary-number limit scales linearly with the contact line velocity, i.e.
θM (Ca) ∼ Ca (Voinov 1976; Cox 1986). Differences are expected to emerge close to
the wetting transition. When the liquid advances, a critical speed exists above which
a stationary contact line cannot be sustained any longer, and liquid deposition may
occur on the solid (Blake & Ruschak 1979; De Gennes 1986; Quéré 1991; Sedev &
Petrov 1991; Podgorski, Flesselles & Limat 2001; Simpkins & Kuck 2003; Eggers
2004a; Jacqmin 2004; Snoeijer et al. 2007). The understanding of this transition is
crucial. In fact, the breaking of stationarity can be interpreted as a lost of universality:
the hydrodynamical regime does not support any longer a time-independent solution,
indicating some singular behaviour in the matching between inner and outer regions.

In his review, Kistler (1993) supports the assumption that wetting failure occurs
when the dynamic angles reach zero degrees (throughout the paper notations are
consistent with a macroscopic angle that decreases as the capillary number increases;
see also the geometry in figure 1 with θM smaller than θm), whereas the contact line
is observed to become V-shaped in the vicinity of the instability (Blake & Ruschak
1979; Ghannum & Esmail 1993).

Evidence for the existence of such critical points of entrainment has also been
provided by some recent theoretical works. The problem has been tackled using a full
hydrodynamic calculation incorporating viscous effects on all scales (Hocking 2001;
Eggers 2004a, 2005). In particular, within the framework of the ‘Landau–Levich’
problem (Landau & Levich 1942; Derjaguin 1943), i.e. a plate plunging into or being
withdrawn from a liquid bath, it has been shown (Eggers 2004a, 2005) that stationary
solutions cease to exist above a critical capillary number Cacr . The value of the
emerging critical capillary number is quantified exactly; although we find universal
features in terms of the microscopic angle (θm) of the liquid at the wall (Cacr ∼ θ3

m), a
non-universality is also present in the geometrical prefactor depending on the angle
of inclination of the plate with respect to the liquid (Eggers 2004a, 2005).

The whole picture is also enriched by recent experimental observations (Snoeijer
et al. 2006), which show that the formation of solitary capillary waves can drastically
change the value of the critical speeds of entrainment (pre-critical wetting transition).
Along these lines, linear stability analysis (Golestanian & Raphael 2001a, b; Snoeijer
et al. 2007) for the relaxation of external perturbations has also revealed that
dispersion relations behave differently away from and close to the critical point.

Wetting failure has also been investigated in a recent paper by Jacqmin (2004),
where a liquid–liquid isoviscous system in a Couette geometry was treated using
various methods. This system, consisting of two walls moving with opposite velocities,
has been treated in the parallel flow approximation, with the Fourier series method
and also with phase field models (Jacqmin 2000, 2004). In these liquid–liquid systems,
wetting failure has been found to set in well before the dynamic angle reaches zero
degrees.

In this paper, we further elaborate on and explore these issues by following a double-
sided strategy. First, we extend the analysis of Jacqmin (2004) to arbitrary viscosity
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ratio χ = μg/μl , where μg and μl are the gas and liquid viscosities, respectively.
We then quantify the breaking of a stationary regime at a critical capillary number
Cacr (χ, λ, θm), which depends on the viscosity ratio χ , the microscopic wettability θm

and the ratio between inner and outer scales, λ= �s/H . Here �s is the slip length
associated with a finite contact line slip, and H is the distance between the two plates
in the Couette geometry (see § 2). The theoretical approach used is based on the
lubrication approximation, i.e. a sharp interface treatment of hydrodynamics dealing
with weakly bended interfaces (Oron et al. 1997). In order to investigate macroscale
geometry effects we also compare our results to those of a similar analysis applied to
the Landau–Levich problem (Eggers 2004a, 2005).

In the second part of the paper we follow a computational pathway. We study
the same Couette flow with multiphase extensions of the lattice Boltzmann equation
(LBE) (Wolf-Gladrow 2000; Succi 2001). In these diffuse interface methods effective
slip is induced by the finite width of the interface (Seppecher 1996; Ding & Spelt
2007), which is explicitly considered in the separation of two bulk phases. On one
side, the LBE provides a benchmark of theory in those cases in which the analytical
approach is questionable (strongly bended interfaces and/or finite contact angles).
On the other side, we use the sharp interface calculation to study the effects of finite
width of the interface on the system. Comparison between a sharp interface theory
(with slip-removed singularity) and LBE (with diffuse-removed singularity) is a way
to probe the universality of the dynamics far from the contact line; i.e. whether the
latter is independent of the microscopic details used to remove the singularity.

Dynamical benchmarks of the LBE for multiphase flows are also important because
of the difficulties in controlling corrections to the hydrodynamical limit in the
presence of strong density gradients (Cristea & Sofonea 2003; Wagner 2003; Lee
& Fischer 2006; Shan 2006; Yuan & Schaefer 2006; Sbragaglia et al. 2007). We show
that the LBE recovers the correct hydrodynamical behaviour at large scales. The
parameter-controlling deviations from sharp interface hydrodynamics will therefore
be proportional to the ratio between the inner length scale (interface width) and the
outer scale of the system.

2. Lubrication approach in the Couette flow
The geometry we study consists of two parallel walls moving with opposite velocities

±Uw . The two walls have opposite wettability so that when the fluid is motionless
the interface is a straight line angling from wall to wall (see figure 1). For each fixed
horizontal (the origin of the coordinates is chosen so that the horizontal spreading
of the interface is centred at x = 0) location (x), the interface profile is denoted by
h(x). Computations are carried out under the assumption of a finite and fixed slip
length (�s), for simplicity the same on both walls. Other parameters are the capillary
number, Ca = Uwμl/σ , and the viscosity ratio, χ = μr/μl . It is further assumed that
the left fluid is the more viscous one, so that μl > μr , and consequently χ � 1. The
computation at χ = 1 serves as the benchmark test of our results when compared to
the results given in Jacqmin (2004).

Using a lubrication approximation (Oron et al. 1997; Jacqmin 2004; Eggers 2004a,
2005; Snoeijer 2005) we carry out a long wavelength expansion in the stationary
equations of motion (i.e. Stokes equation and continuity equation). Therefore, the
theory developed is expected to be valid in the limit of small tilting angles between
the interface and the wall. In this way, for a fixed horizontal coordinate x, the
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Figure 1. The geometry used to analyse the stability problem. Two parallel walls are moved
with opposite velocities ±Uw . The two fluids under consideration are distinguished as left (l,
more viscous) and right (r, less viscous), and the viscosity ratio is denoted by χ = μr/μl . The
angles that the fluids form with the walls are complementary (opposite wetting properties).
The microscopic angle θm is defined as the angle that the left fluid forms with the lower wall,
and the angle θM is taken as the angle in the centre of the channel, with the convention that
for finite capillary number θM is smaller that θm. The interface is determined by a function
h(x) of the horizontal coordinate. Streamwise and vertical velocity fields for the left and right
fluids will respectively be denoted with ul,x and ul,y and with ur,x and ur,y .

complete set of equations to be analysed is

μl

∂2ul,x

∂y2
=

∂pl

∂x
, μr

∂2ur,x

∂y2
=

∂pr

∂x
, (2.1)

∂xul,x + ∂yul,y = 0, ∂xur,x + ∂yur,y = 0, (2.2)

where we respectively label with l and r the left and right fluids with viscosities μl

and μr and pressures pl and pr . These equations are the natural generalization of
those analysed in Jacqmin (2004), where the author considered the case μl = μr . The
solutions for the horizontal velocities in the left and right fluids (ul,x, ur,x) are rapidly
evaluated as
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1
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2
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)
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(
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1

2
pr,xy

2

)
, (2.3)

where we have used pl,x = ∂pl/∂x and pr,x = ∂pr/∂x. The vertical components ul,y

and ur,y have to be evaluated from (2.2) with the usual boundary condition of zero
normal velocity at the wall. Obviously, Al , Bl , pl,x , Ar , Br , pr,x have to be determined
upon the imposition of ad hoc boundary/matching conditions that will determine the
position of the interface h(x). The relevant matching conditions are the continuity of
the parallel velocity and viscous stress at the interface

ul,x |h = ur,x |h , μl

∂ul,x

∂y

∣∣∣∣
h

= μr

∂ur,x

∂y
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h

(2.4)

plus the lower and upper wall boundary conditions written as

ul,x |0 − Uw = �s

∂ul,x

∂y

∣∣∣∣
0

, ur,x |H + Uw = −�s

∂ur,x

∂y
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H

. (2.5)
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Finally, we have the kinetic condition of no flux across the interface:

n̂xul,x + n̂yul,y = n̂xur,x + n̂yur,y = 0, (2.6)

with n̂ the normal at the interface in h(x). In the Appendix we show how to map
the six boundary conditions in a closed system and solve the corresponding matrix
problem as a function of the separation of scale, λ= �s/H , the capillary number,
Ca =Uwμl/γ , and the viscosity ratio, χ = μr/μl .

Once the pressure drop across the interface is known, one may derive using the
Laplace law the equation for the local curvature, κ , of the interface:

σ
dκ

dx
= pr,x − pl,x, (2.7)

with σ the surface tension at the interface. As already noticed by Jacqmin (2004), if
we denote the interface arclength coordinate with s, we can consistently write with
the lubrication approximation that

σ
dκ

ds
= pr,x − pl,x, (2.8)

where the derivative of the curvature is connected to the angular variation dθ̃/ds = κ

(where θ̃ = π − θ). Summarizing, the governing equation set is

d

ds
(κ, θ̃ , x, y) = (σ −1(pr,x − pl,x), −κ, cos θ̃ , − sin θ̃). (2.9)

This becomes a nonlinear boundary value problem: we need to solve the ODE
(ordinary differential equations) (2.9) for a given capillary number, Ca , viscosity
ratio, χ , and separation of scale, λ= �s/H , with the boundary conditions for the
microscopic angle at the wall equal to θm. (For the present study we assume that the
microscopic wall wettability is not dependent on the velocity.) We have therefore a
four-parameter problem. To solve numerically the previous set of nonlinear ODEs,
we adopt a second-order Runge–Kutta method with a non-uniform grid of increasing
resolution near the wall. Notice that in the presence of two different viscosities
(μr �=μl) the interface is not symmetric with respect to the centre of the channel. For
given values of viscosity ratio and capillary number, we look for solutions of (2.9)
by fixing the angle in the centre of the cell, θM , and choosing the curvature in that
location so that it matches with the desired boundary condition, θm.

In figure 1 we show the results for θM as a function of the capillary number Ca .
The separation of scale is kept fixed to λ= �s/H =10−5 and the viscosity ratio to
χ =1.0. Various boundary conditions (i.e. microscopic wettabilities) are considered.
In the limit of small Ca the macroscopic angle is equal to the microscopic wettability
θm, but soon after Ca is increased, the interface is stretched, and the macroscopic
angle decreases. By increasing the capillary number, we clearly see that there is
a range in which two solutions can exist. This is typical of fixed-point structures
in dynamic systems, suggesting that a bifurcation happens at a critical capillary
number, Cacr , separating two branches, a stable branch (dθM/dCa < 0) and an
unstable one (dθM/dCa > 0). Above the critical capillary number no stationary
solution can be found: beyond this value the interface evolves dynamically, and liquid
entrainment on the solid is expected to take place. To better stress the existence
of a range of capillary numbers where two solutions are found we also show (see
figure 2b) the stationary interfaces corresponding to two different outer angles, θM ,
with the same boundary physics, θm. From this figure we also see that our analysis
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Figure 2. (a) Macroscopic angle θM as a function of the capillary number Ca for various
microscopic angles θm and for a viscosity ratio χ = 1.0. The value of the microscopic angle
corresponding to each curve can be extracted from the small capillary number limit (Ca → 0).
The value of the separation of scale is kept constant at λ= 10−5. Data from Jacqmin (2004)
are also reported for the case with θm = 45◦ (◦). On a specific curve (θm = 45◦), the critical
capillary number, where the static solution becomes unstable, is indicated. (b) Two static
profiles belonging to the stable and unstable branches for a given viscosity ratio χ = 1.0. For
the same microscopic contact angle (θm = 45◦) and separation of scale (λ= 10−5) we show
two stationary interface profiles corresponding to the same capillary number Ca = 0.0032. The
profile is plotted in terms of dimensionless coordinates y(x)/H and x/H . Results correspond
to the branch shown in figure 1 where our results are compared with those of Jacqmin (2004).
Notice that the unstable solutions correspond to an enlarged bending of the interface close to
the wall region.

15

30

45

60

75

90
(b)(a)

0 0.005 0.010 0.015 0.020 0.025

Ca

0

0.05

0.10

0.15

0.20

0.25

30 45 60 75 90

C
a c

r

θ
M

 (d
eg

.)

λ = 10–5; χ = 0.1
χ = 0.1

λ = 10–1

λ = 10–3

λ = 10–5

λ = 10–7

θm (deg.)

Figure 3. (a) Macroscopic angle θM as a function of the capillary number Ca for various
microscopic angles θm and for a viscosity ratio χ = 0.1. The value of the microscopic angle
corresponding to each curve is provided by the small capillary number limit (Ca → 0). The
value of the separation of scale is kept constant at λ= 10−5 and the viscosity ratio at χ = 1.0.
(b) The critical capillary number as a function of the microscopic angle θm for various
separation of scales λ: λ= 10−1 (×); λ= 10−3 (�); λ= 10−5 (◦); λ= 10−7 (�).

perfectly matches data presented in figure 2 of the paper by Jacqmin (2004) and
reported in figure 2(a) using the symbols.

New results are presented for the case of a different viscosity ratio in figure 3,
where we show θM as a function of the capillary number for a given separation of
scale, λ= �s/H = 10−5, various microscopic wettabilities, θm, and fixed viscosity ratio,
χ = 0.1. The behaviour of the unstable branch is very sensitive to the viscosity ratio
as well as the microscopic wettability: here we see that as soon as χ �= 1, the second
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Figure 4. Critical capillary number as a function of the viscous ratio. (a) For a fixed
microscopic angle (θm = 45◦) and separation of scale (λ=10−5) we show the macroscopic
angle θM as a function of the capillary number for different viscosity ratios χ . Note the
saturation of the curve when approaching values comparable with those of water and air at
ordinary temperatures (χ ∼ 0.001). In that limit the equations are exactly solvable, and we
recover the usual solution for liquid–gas film. (b) We plot the integral of the squared curvature
along the interface K =

∫
|∂xxh(x)|2 dx as a function of the capillary number for the same

microscopic wettability θm = 45◦ and λ= 10−5. Different viscosity ratios are chosen such as to
stress the different interface stretching.

(unstable) branch no longer reaches very small values of θM . In figure 3(b) we show
the critical capillary number as a function of the microscopic wettability. Notice that
there are remarkable variations with respect to λ only for the larger values considered:
for λ= 10−5 to 10−7 the results are already pretty stable and weakly λ dependent. This
kind of study will be important later on, when comparing with the LBE in which,
because of numerical limitation, one cannot ever reach separation of scales smaller
than λ= 10−2 to 10−3. Not surprisingly, figure 3 shows that for large-scale separation
the interface becomes more stable; i.e. Cacr becomes larger.

By changing the viscosity ratio one can now understand the way Cacr is related to
χ . In figure 4 we present results for θM as a function of Ca for a given separation
of scale λ=10−5 when changing the viscosity ratio, from χ = 1 down to χ = 10−3 (a
realistic value for a liquid–gas interface at ordinary temperatures). The qualitative
picture is always the same: the macroscopic angle decreases and reaches a bifurcation
from which we extract the critical capillary number. We also notice that in each
curve the range of macroscopic angles associated with the two branches decreases
with χ and also that, on decreasing χ , we reach a limiting curve; i.e. results become
almost independent of the viscosity ratio. The fact that by decreasing the viscosity
ratio we increase the critical capillary number can be qualitatively understood from
the equations of motion (2.1). When χ → 0 one of the two viscosities moves close
to zero, whereas the other stays finite. In this limit, the contribution of the pressure
gradient in the less viscous fluid becomes negligible. Therefore, the local change in
the curvature given by (2.8) is triggered only by the pressure gradient of a single fluid,
and we need higher capillary number to stretch it and break stationarity. This is also
complemented with the integral of the squared curvature along the profile (see figure
4a) for the same microscopic angle and separation of scale. The increasing stretching
of the interface as a function of the viscosity ratio (moving from χ = 0 to χ = 1) is
reflected in this plot.
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Figure 5. Role of the geometry. The opposite wettability configuration (a, configuration a) is
modified into another configuration (b), where the top wettability is kept fixed (configuration b).
In both cases we take the macroscopic angle θM as the angle corresponding to the location
h(x) =H/2.
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Figure 6. Outer scale non-universality. The critical capillary number is computed for the case
of an opposite wettability boundary condition (see configuration a, figure 5) and different
separations of scales (symbols). A similar analysis is done for configuration b (see figure 5),
where the top wettability has been fixed to a constant value while changing only the lower
wettability. The values of the separation of scales considered are between λ= 10−5 and λ= 10−3,
and the viscous ratio is set to χ = 0.1.

2.1. Dependence on the walls’ wettability

The aim of this section is to investigate the role of the wetting boundary condition at
the walls. So far, we have considered the opposite wettability boundary condition as
shown in figure 1, where the angle the left liquid forms with the lower boundary is
the same as the angle the right fluid forms with the upper boundary (configuration
a). A possible test to understand the role of the boundary wettability is to consider
another configuration (configuration b; see figure 5), where the top wettability is kept
fixed to a given value. The microscopic wettability is now changed only at the lower
boundary. We can compute the critical capillary number in terms of both θm and λ
as described in the previous sections. The separation of scales considered is between
λ=10−5 and λ= 10−3. The critical capillary number in configuration b overestimates
the case with opposite wettability (configuration a), and discrepancies are found to
be enlarged when λ becomes larger (see figure 6). The separation between the two
contact line regions is indeed less pronounced when λ is not very small, and differences
can be expected to emerge in that limit. Overall, the discrepancies between the two
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critical capillary numbers are not that large. This is a consequence of the small values
of the separation of the scale chosen. Repeating the analysis for values of λ ∼ 10−1

leads to a larger discrepancy, indicating that non-universality with respect to the outer
geometry becomes more and more pronounced by increasing λ.

2.2. The limit of zero viscosity ratio

We now address the properties in the limit of zero viscosity ratio, χ =μr/μl → 0.
To do that we have to consider only the left liquid because the other component
has zero viscosity, and its pressure fluctuations are ruled out, pr,x = 0 in (2.1). In this
limit the lubrication equations simplify and reduce to the well-known treatment for
liquid–gas interfaces (Eggers 2004a, 2005; Snoeijer 2005; Snoeijer et al. 2007), where
viscous friction is balanced with capillary effects:

d3h

dx3
= − 3Ca

h(h + �s)
. (2.10)

This is very similar to the inner description found in a contact line problem involving
the Landau–Levich geometry (Landau & Levich 1942; Derjaguin 1943) of a plate
withdrawn at a given velocity from a liquid bath (Eggers 2005; Snoeijer et al. 2006,
2007). This inner solution is usually found by expanding in a power series in the
capillary number (Voinov 1976; Hocking 1983; Eggers 2004b) with the final result
that, away from the contact line, the cube of a macroscopic angle θ3(x) ≈ (dh/dx)3

changes in the manner

θ3(x) ≈ θ3
m − 9Ca log

(
x

�s

)
. (2.11)

This is basically achieved for sufficiently large arguments of x/�s , and the related range
is usually called the intermediate range. When we approach Cacr , the macroscopic
angle decreases, and one can argue that the relevant scaling properties of the critical
capillary number can be captured by setting to zero the left-hand side of (2.11). This
implies that Cacr rescales like the cube of the microscopic wettability and is inversely
proportional to log λ−1. Therefore, for a fixed microscopic wettability θm, we expect
a precise rescaling factor for the critical capillary numbers, at changes in the scale
separation:

Cacr |λ2
= Cacr |λ1

log λ1

log λ2

. (2.12)

It is interesting to check the range of applicability of the previous heuristic argument
with respect to our data. In particular, in figure 7 we check the validity of the
proposed scaling relation for two characteristic viscosity ratios, χ =1.0 and χ =0.1.
We consider the critical capillary number as a function of the microscopic wettability
θm and various small separation of scales λ. We compare both unscaled and scaled
critical capillary numbers using (2.12). Interestingly, we observe that the scaling
behaviour is correct even for quite large θm, whereas the theory developed is based on
a lubrication approximation in which small tilting angles are assumed (Snoeijer 2005).
Notice that the scaling relation is found to also hold in the limit of equal viscosities.
The term proportional to log λ is connected to the viscous stress divergence of the
fluid at the contact line (Voinov 1976; Cox 1986; De Gennes 1986), and this happens
for all the values of the viscosity ratio. Even if the equivalent of (2.11) for finite
viscosity ratios is different (Cox 1986), the separation of scale always appears as
log λ, determining the main rescaling properties for the critical capillary number. In
the limit of χ → 0 it is also worthwhile to compare our estimate for the critical
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Figure 7. Scaling for the critical capillary number as obtained from the full hydrodynamic
calculation in the lubrication approximation. (a) Cacr as a function of the microscopic angle
θm for χ = 1.0 is rescaled according to the formula predicted by theory. The separation of scale
is kept fixed to λ2 = 10−7 (�). Various λ1 are then considered: λ1 = 10−3 (�), λ1 = 10−5 (�). In
the inset we show unscaled data (same symbols) for Cacr as a function of θm: notice that the
variability is extensively reduced for rescaled variables leading to a good collapse. (b) Same as
(a) but with a viscosity ratio χ = 0.1.

capillary number in the Couette cell with a similar analysis done in some recent
papers (Eggers 2004a, 2005) for the case of the Landau–Levich geometry (Landau
& Levich 1942; Derjaguin 1943) of a solid withdrawn from a liquid bath. In that
case, the problem is tackled as a multi-scale problem: the inner contact line region in
which viscosity is balanced with capillarity must be connected with an outer region in
which gravity is balanced with capillary forces. An instability occurs when the outer
meniscus approaches the shape corresponding to a perfectly wetting fluid, i.e. an
apparent contact angle approaching zero degrees. An investigation of the conditions
under which the highly curved contact line region can be matched to the outer profile
leads to the introduction of a critical capillary number (Eggers 2004a, 2005)

Cacr =
θ3
m

9

[
log

(
Ca1/3

cr θm

181/3π[Ai(smax )]2λθin

)]−1

(2.13)

where θin is the angle of inclination of the plate with respect to the liquid bath; Ai is the
Airy function; and smax = −1.0188 . . . is the point at which the Airy function assumes
its maximum. The set-up is clearly different from a Couette cell. Nevertheless, it is
useful to compare both results to understand the role of the geometry in determining
the critical capillary number. We choose the same separation of scale, λ=10−7, and
a small viscosity ratio, χ = 0.01, in the Couette cell. This is done to determine the
region in which we observe the collapse of data, as discussed in figure 4. We use
two characteristic angles of inclination θin in (2.13) (θin = 5.73◦ and θin = 90◦), and the
results are plotted in figure 8. The order of magnitude of the different critical capillary
numbers is comparable, and data share the same scaling properties with respect to
θm(Cacr ∼ θ3

m). The presence of an overall pre-factor dependent on the geometry is
clearly visible from the figure. For the sake of completeness, we have also considered
a recent prediction of Hocking (2001) for fluids in narrow channels. The geometry is
that of a fluid confined between two parallel plates at distance 2d under the effect of
gravity. The main difference with the previous cases is that the speed of withdrawal
is not an additional parameter, but it is fixed in terms of the bulk forcing, i.e. gravity.
After introducing a Bond number Bo = ρlgd2/σ , with the liquid density ρl and the
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Figure 8. A comparison between our analysis and the proposed estimate for the critical
capillary number given in (2.13) for a plate being withdrawn from a liquid at a given speed.
The angle of inclination of the plate is θin, and as it emerges from Eggers (2004), the critical
capillary number is a function of both the geometry and inner physics. Typical outcomes for
θin = 5.73◦ and 90◦ are shown. In our case we choose the same λ, and the viscosity ratio is set
to a small value so as to have data already collapsed on the limiting curve for χ → 0 (figure 4).
Data from Hocking (2001) are also reported for the case of a fluid in a narrow channel under
the effect of gravity (equation (2.14)).

gravity g, one finds that the connection between Bo and the capillary number is
Ca =Bo/3. In this notation μl is the liquid viscosity and U the average speed of
motion due to gravity. A critical value in the Bond number (equation (17) in Hocking
2001) is then translated into a critical capillary number as

Cacr ≈ 0.6

3 log(λ−1)
θ3
m. (2.14)

The plot of (2.14) is also shown in figure 8 with the same λ as the previous estimates.
This prediction overestimates all previous curves.

3. Numerical approach: diffuse interface methods and LBE
In this section we will use numerical simulations to further investigate the problem

previously discussed. An approach based on first principles to address the inner physics
of contact line problems is molecular dynamics (MD). These simulations, which
usually involve Lennard–Jones liquids and several thousand molecules, appear to
exhibit continuum behaviour at the macroscopic level (Koplik, Banavar & Willemsen
1989; Thompson & Robbins 1989; Barrat & Bocquet 1999; Denniston & Robbins
2001). All these MD results give insight especially in the region close to the contact
line, pointing to the breakdown of the no-slip boundary condition at very small
distances as a possible explanation of contact line motion (Thompson & Robbins
1989; Barrat & Bocquet 1999). Also alternative explanations of contact line motion
exist, and they do not rely on the breakdown of the no-slip boundary condition. As
was noticed by Seppecher (1996), a sharp interface model may be questioned. It is
itself an approximation which may not be valid in the vicinity of the contact line.
Molecular simulations or a continuum model need to be used to describe the interface
as a diffuse layer, i.e. a layer of finite thickness. The curvature of the interface near the
contact line leads to mass transport across the interface, thus removing the viscous
singularity. Similar analysis in binary fluid systems (Chen, Jasnow & Vinals 2000;
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Jacqmin 2000) shows that diffusive transport of the fluid leads to effective slip at the
contact line. Also mesoscopic diffuse interface models for two-phase flows based on
the LBE (Wolf-Gladrow 2000; Succi 2001) have been applied to the simulation of
contact line motion and related problems (Briant, Wagner & Yeomans 2004; Briant
& Yeomans 2004; Jia, McLaughlin & Kontomaris 2006; Zhang & Kwok 2006; Latva-
Kokko & Rothman 2007). In particular, we further elaborate along these lines, using
mesoscopic diffuse interface models in which multi-phase physics is induced by using
a pseudo-potential approach originally developed by Shan & Chen (1993, 1994);
hereafter SC.

3.1. LBE for non-ideal fluids

We start from the usual LBE with a single-time relaxation (Bhatnagar, Gross &
Krook 1954; Wolf-Gladrow 2000; Succi 2001):

fl(x + cl�t, t + �t) − fl(x, t) = −�t

τ

(
fl(x, t) − f

(eq)
l (ρ, ρu)

)
+ Fl, (3.1)

where fl(x, t) is the kinetic probability density function associated with a mesoscopic
velocity cl (there being a discrete set of velocities); τ is the mean collision time
(with �t a time lapse), f

(eq)
l (ρ, ρu) the equilibrium distribution, corresponding to

the Maxwellian distribution in the continuum limit, and Fl represents a general
forcing term whose role will be discussed later in the framework of inter-molecular
interactions. From the kinetic distributions we can define macroscopic density and
momentum fields as (Wolf-Gladrow 2000; Succi 2001):

ρ(x) =
∑

l

fl(x); ρu(x) =
∑

l

clfl(x). (3.2)

For technical details and numerical simulations we shall refer to the nine-speed, two-
dimensional 2DQ9 model (Wolf-Gladrow 2000), often used because of its numerical
robustness. The equilibrium distribution in the LBEs is obtained via a low Mach
number expansion of the Maxwellian continuum (Wolf-Gladrow 2000; Succi 2001):

f
(eq)
l = w

(eq)
l

[
ρ +

ci
l ρui

c2
s

+

(
ci
l c

j
l − c2

s δij

)
2c4

s

ρuiuj

]
, (3.3)

where c2
s = 1/3, and i = 1, 2 = x, y runs over spatial dimensions. The weights w

(eq)
l are

chosen such as to enforce isotropy up to fourth-order tensor in the lattice (Wolf-
Gladrow 2000; Succi 2001). From the equilibrium distribution and the symmetry
properties of cl , the kinetic second-order tensor of the equilibrium distribution
immediately follows (Wolf-Gladrow 2000):∑

l

f
(eq)
l ci

l c
j
l = δij

(
c2
s ρ

)
+ ρuiuj ,

where, in the first term of the right-hand side, we recognize the ideal-gas pressure
tensor Pij = δij (c

2
s ρ). In order to study non-ideal effects we need to supplement the

previous description with an inter-particle forcing. This is done by choosing a suitable
Fl in (3.1). In the original SC model, the bulk inter-particle interaction is proportional
to a free parameter (the ratio of potential to thermal energy) Gb, entering the equation
for the momentum balance:

Fi =
∑

l

Flc
i
l = −Gbc

2
s

∑
l

w(|cl |2)ψ(x, t)ψ(x + cl�t, t)ci
l , (3.4)
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where w(|cl |2) is the static weights and ψ(x, t) =ψ(ρ(x, t) is the (pseudo-) potential
function which describes the fluid–fluid interactions triggered by inhomogeneities of
the density profile (Wolf-Gladrow 2000; Sbragaglia et al. 2007). We shall refer to the
pseudo-potential used in the original SC work, namely

ψ(x, t) = (1 − exp(−ρ(x, t))). (3.5)

Note that this reduces to the correct form ψ → ρ in the limit ρ � 1, whereas at high
density (ρ 	 1), it shows a saturation. The latter is crucial to prevent density collapse
of the high-density phases. (The SC potential is purely attractive, so a mechanism
stabilizing the high-density phase is mandatory to prevent density collapse.) In
principle, other functional forms may be investigated, sometimes with impressive
enhancement of the density ratios supported by the model (Yuan & Schaefer 2006).

In order to understand the corrections to the ideal-state equation induced by
the pseudo-potential, we need to define a consistent pressure tensor Pij for the
macroscopic variables:

∂jPij = −Fi + ∂i

(
c2
s ρ

)
. (3.6)

Upon Taylor expansion of the forcing term and assuming hereafter �t = 1, we obtain

Fi = −Gbc
2
s ψ∂iψ − Gb

2
c4
s ψ∂i�ψ, (3.7)

which is correctly translated (He & Doolen 2002; Benzi et al. 2006) into

Pij =

(
c2
s ρ + Gb

c2
s

2
ψ2 + Gb

c4
s

4
|∇ψ |2 + Gb

c4
s

2
ψ�ψ

)
δij − 1

2
Gbc

4
s ∂iψ∂jψ. (3.8)

The evolution scheme (3.1) together with the inter-particle force (3.4) approximates
the following diffuse interface equations for the density and momentum fields (3.2):

∂tρ + ∂j (ρuj ) = 0, (3.9)

∂t (ρui) + uj∂j (ρui) = −∂jPij + ∂jΠij (3.10)

with Πij the usual viscous stress tensor (Wolf-Gladrow 2000; Succi 2001; Briant et al.
2004; Briant & Yeomans 2004). Capillary effects, mimicking non-trivial interactions
with the wall, can be incorporated in this approach by using a suitable wall function
(Sbragaglia et al. 2006, 2007).

A disadvantage of the SC formulation is that, there being only one free parameter
to tune (Gb), one cannot independently change the density ratio and surface
tension. Here we use a recent extension of the SC model that overcomes this
limitation, by introducing first and second neighbours coupling in the pseudo-potential
(Sbragaglia et al. 2007):

Fi = −c2
s

∑
l

w(|cl |2)ψ(x, t)[G1ψ(x + cl , t) + G2ψ(x + 2cl , t)]c
i
l . (3.11)

This coupling leads to the following pressure tensor in the continuum limit:

Pij =

(
c2
s ρ + (G1 + 2G2)

c2
s

2
ψ2 + (G1 + 8G2)

(
c4
s

4
|∇ψ |2 +

c4
s

2
ψ�ψ

))

× δij − (G1 + 8G2)

2
c4
s ∂iψ∂jψ. (3.12)

Furthermore, in order to reduce the importance of spurious currents at interfaces
(Cristea & Sofonea 2003; Wagner 2003; Lee & Fischer 2006; Shan 2006; Yuan &
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Schaefer 2006; Sbragaglia et al. 2007) one can also introduce the non-ideal terms
directly into the equilibrium distribution as explained in some recent papers (Briant
et al. 2004; Briant & Yeomans 2004). With this strategy we impose the desired
pressure tensor instead of writing explicitly the forcing term (3.11). We can thus use
G1 and G2 to vary the density ratio and width of the interface (i.e. surface tension)
independently. As a matter of fact, the use of Van der Waals pressure tensors (Briant
et al. 2004; Briant & Yeomans 2004) may limit seriously the density ratios achieved
in the simulations.

3.2. Stationary contact line description: Cox (1986) vs LBE

In this sub-section we explore and investigate the conditions under which our diffuse
interface models converge with the predictions of sharp interface hydrodynamics. As
we have already seen and discussed in (2.11), we should expect an intermediate range
with a prediction of scaling for the slope of the interface in terms of the capillary
number and microscopic slip length. A further extension for that prediction of scaling
for two fluids with finite viscosity ratio has been provided by Cox (1986). This scaling
relation translates (see figure 1 in Cox 1986) in our coordinates (see figure 1) as

g(θ(r), χ) = g(θ(0), χ) + Cag log(r/�s), (3.13)

g(θ, χ) =

∫ θ

0

1

f (x, χ)
dx (3.14)

and

f (x, χ) =
2 sin x[χ−2(x2 − sin2 x) + 2χ−1(x(π − x) + sin2 x) + ((π − x)2 − sin2 x)]

χ−1(x2 − sin2 x)((π − x) + sin x cos x) + ((π − x)2 − sin2 x)(x − sin x cos x)
,

(3.15)

where we have defined Cag = μrUw/σ as the capillary number estimated in the less
viscous fluid, r as the distance from the stationary contact line and the angle θ(r)
consistent with the notation of figure 1 in Cox (1986). The paper by Cox studies a pure
sharp interface treatment of the moving contact line, involving a finite viscosity ratio
and the length scale �s associated with microscopic slip motion. This approach turns
out to be extremely useful to compare with simulations, where it is difficult to reach
very small viscous ratios. We expect that in diffuse interface methods, when we look
at the contact line on scales much larger than the interface width ξ , a quantitative
matching with the sharp interface prediction (3.13) is recovered. The length scale �s is
now associated with the effective slip generated by the diffuse interface mechanisms
(Seppecher 1996; Jacqmin 2000; Pismen & Pomeau 2000). This study opens the
possibility of testing the universality in the intermediate region independent of the
inner physics mechanisms. In our numerical simulations we fix the viscosity ratio
χ = 0.1, and the associated density ratio is so chosen that the interface width ξ is of
the order of some grid points. (One would need a systematic procedure to give ξ . A
possible way is to define ξ in terms of those points on which the local gradient exceeds
a given threshold. In any case the width ξ does not exceeds some units, and it is
reassuring to assume ξ/�x =4±1 for the case of χ = 0.1.) The wetting properties are
chosen as explained in some recent studies (Benzi et al. 2006; Sbragaglia et al. 2007).
In particular, for the present set of simulations, we use a neutral wetting boundary
condition, θ(0) = π/2 in (3.13). To do that we assume that the pseudo-potential of the
lattice Boltzmann description (3.5) achieves a neutral stress at the boundaries (∂nψ =0,
with n the normal with respect to the wall). With a fixed Cag , interface width ξ and
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Figure 9. The comparison between numerical simulations and the scaling relations for the
intermediate region as predicted by Cox (1986). (a) The scaling for g(θ, χ) as a function of
the distance from the contact line r . For a fixed capillary number in the gas phase, Cag , fixed
viscosity ratio, χ , and fixed slip length, the sharp interface theory predicts a linear scaling of
the function g(θ, χ) (see (3.13)) with respect to log r . The development of the intermediate
region is shown for various numerical resolutions approaching the sharp interface limit, where
theory and numerics become asymptotically comparable. In the intermediate region the slope
is the one predicted by theory, i.e. equal to Cag = μrUw/σ . (b) Same as (a) with different
capillary numbers and a given resolution in the vertical direction.

viscosity ratio χ = 0.1 we then carry out numerical simulations in our Couette cell
by increasing the distance between the walls: H = 200�x, 400�x, 600�x, 800�x (see
figure 9a), with �x the lattice spacing. Half of the computational domain is then
initialized with the left, more viscous fluid, and rotational boundary conditions are
implemented at the inlet and outlet as discussed by Briant & Yeomans (2004). No-slip
boundary conditions are implemented exactly; i.e. the mechanism of removing the
contact line singularity is found in compressibility effects because of the diffuse nature
of the model. The results of the numerical simulations (see figure 9) clearly show
that by enlarging the resolution, i.e. increasing the ratio of the outer scale H with
respect to the interface width, we correctly approach the linear scaling behaviour of
g(θ(r), χ) with respect to log r . The slope is correctly given by Cag in (3.13). The
linearity with respect to Cag is further checked in figure 9(b), where we keep H fixed
and simply change the capillary number by changing the velocity at the wall Uw .

3.3. Full hydrodynamic calculations: lubrication theory vs LBE

In the previous sub-section we quantitatively matched the diffuse interface methods
with the universal scaling properties in the intermediate range, as predicted by Cox
(1986). To achieve a good comparison, a lattice Boltzmann separation of scale,
λLBE = ξ/H , must be chosen as a small-scale parameter; i.e. the scales of observation
must be larger with respect to the inner length scale specified by the interface
width ξ . Clearly, λLBE plays the role of the separation of scale in the diffuse interface
description. In particular, we can investigate the possibility of a quantitative matching
with the prediction from the full hydrodynamical calculation developed in the first
part of the paper. By doing so, we are able to explore the comparison between
the two descriptions (sharp vs diffuse) on all length scales and not simply in the
intermediate range as done in the previous sub-section. To do that we choose the
same viscosity ratio as before (χ = 0.1), and we fix the distance between the walls to
be H = 100�x. The microscopic wettability θm is chosen to be equal to 58◦, and then
we vary the capillary number Ca . For each value of Ca we reach the stationary state
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Figure 10. The comparison between theory and numerical simulations for the macroscopic
angle θM as a function of the capillary number Ca on the stable branch. (a) For a fixed
microscopic angle θm = 58◦, three different scale separations λ are used: λ= 0.048 (�); λ= 0.024
(�); λ= 0.012 (�). In the numerics the different scale separations are obtained by fixing the
interface width in the diffuse interface approach and using different heights H . (b) Same as
(a) for a microscopic contact angle θm = 72◦.

and obtain the corresponding value of the angle in the centre of the cell (θM ). To
extract the angle we perform a contour plot of the density field on the interface at the
level ρav = (ρg + ρl)/2, with ρg and ρl the gas and liquid densities, respectively. The
corresponding plot of θM vs Ca is shown in figure 10(a). Notice that when we reach a
critical value of the capillary number, no stationary interface is observed above that
value. This is precisely the same behaviour as predicted by theory. In particular, we
can find the correct value of λ in the sharp interface treatment of the Couette cell
able to fit correctly the numerical prediction. It is found that the correct value of λ
is approximately 0.024, which is of the order of λLBE . We can also repeat the whole
experiment with the viscosity ratio and interface width fixed to the same values but
doubling or reducing by a factor 2 the resolution between the walls. We expect (as
observed in figure 10) that the corresponding numerical data would match with the
theoretical prediction obtained by doubling or reducing by a factor 2 the previously
used λ. The same study is also done with a different microscopic wettability (θm =72◦;
see figure 10b). Overall, we observe a good agreement between the two approaches.

In figure 11 we compare stationary interface profiles for a fixed viscosity ratio,
χ = 0.1, and two characteristic capillary numbers, Ca =0.022 and Ca = 0.033. We
choose H = 100�x, and the interface width ξ is kept fixed. The corresponding
prediction from the theory has been produced with the value of λ that matches the
corresponding numerics in the plot of θM as a function of Ca (see middle plots of
figure 10). It should be noticed that the bulk regions are correctly matched, whereas
small discrepancies emerge close to the boundaries. One may want to argue that the
lubrication theory is valid only in the limit of small tilting angles (i.e. microscopic
wettabilities), and the presence of finite wettabilities can produce a small mismatch
between theory and numerics. However, it should also be noted that close to the
boundaries the inner physics is completely different: in the sharp interface limit the
dynamics is dominated by slip properties while in the diffuse interface case by the
finite thickness of the interface. Overall, at least for the range of parameters studied
here, the agreement is satisfactory and shows a good global universality with respect
to the mechanisms resolving the contact line singularity.

Much more stringent comparisons can be carried out by looking at the local details
in the stationary regime of the velocity field. Numerical and theoretical snapshots of
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Figure 11. The static interface shape for a given capillary number and microscopic angle θm.
(a) For θm = 58◦ we show the results of the numerical simulations for two different capillary
numbers: Ca = 0.033 (�), Ca = 0.012 (�). The corresponding theoretical prediction is shown
(—). The horizontal and vertical coordinates have been made dimensionless with respect to
the system’s height H . The separation of scale λ in the theory is 0.024, i.e. the correct one
to reproduce the diffuse interface results for the macroscopic angle θM as a function of the
capillary number Ca (see figure 10). (b) Same as (a) but for θm = 72◦.
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Figure 12. A stationary state of the Couette cell in the numerics with diffuse interface (a) and
in the sharp interface theory (b). The vertical length scale has been made dimensionless with
respect to the height H and the horizontal one with respect to the horizontal extent of the
interface L. Good agreement is found in the qualitative details of the velocity fields: a two-roll
structure is developed in both the gas and liquid phases. These plots share qualitative features
with the molecular dynamics simulations by Thompson & Robbins (1989). The interface
location is also displayed (lines angling from wall to wall).

the velocity vector are displayed in figure 12. Qualitative features are very similar for
both cases. In fact, it is evident from both theory and numerics that a two-roll structure
(Thompson & Robbins 1989) is present in the two fluids. Looking at the details of
the velocity field in the streamwise (x) direction we can further compare theory and
numerics. In figure 13(b), for a fixed capillary number Ca , viscosity ratio χ , separation
of scale λ and microscopic wettability θm, we show the streamwise component of the
velocity (ux(x, y)) as a function of y for various horizontal locations x, as extracted
from the theory developed in § 2 . Further details in terms of the separation of scales
λ are displayed in figure 13(b). When we fix the parameters Ca , χ and θm, the velocity
profiles tend to converge with the master plot for small values of λ.

It is interesting to carry out a similar analysis in the numerics. To do that, we
can fix the viscosity ratio χ , the microscopic wettability θm and the capillary number
Ca to be the same as the case of figure 13(b). With the interface width ξ fixed to a
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Figure 13. Velocity profiles in the streamwise direction as obtained from theory. (a) Velocity
field ux(x, y) as a function of y/H for different values of x along the horizontal direction
(see also figure 12) of the interface L: x/L = 0.25 (�); x/L = 0.5 (�); x/L =0.75 (◦). The
separation of scale is λ=0.1; the capillary number is Ca = 0.011; and the microscopic
angle is θm =58◦. (b) The velocity profiles in the streamwise direction ux(x, y) as functions
of y/H , for x/L = 0.5 and different separations of scales: λ=0.1 (�); λ= 0.01 (�);
λ=0.001 (◦).
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Figure 14. Comparison between theory and numerical simulations. We show the velocity field
in the streamwise direction ux(x, y) as a function of y/H , for x/L = 0.5 (L is the horizontal
length scale of the interface, see also figure 12), for a capillary number Ca = 0.011 and a
microscopic angle θm = 58◦. The theoretical profile is obtained with a separation of scale
λ=0.001, already in the region of saturation shown in figure 13. The numerical results are
obtained with a fixed interface width ξ and increasing numerical resolution in the vertical
direction, i.e. at decreasing the separation of scale λLBE = ξ/H .

given value, we can then increase the resolution between the walls and study the way
the diffuse interface velocity converges with the sharp interface prediction. Results are
presented in figure 14. We notice that by increasing the resolution H from 100�x to
800�x, by H = 600�x we have already reached a limiting profile. On the other hand, if
we compare the asymptotic numerical profile with the theoretical prediction (solid line
in figure 14) we observe a mismatch in the less viscous region. The discrepancy can be
due to different factors. First, we can argue that the sharp interface prediction coming
from the lubrication theory may not be fully correct for finite wettabilities; i.e. a small
overestimation in the pressure gradients would be amplified in the less viscous part
as predicted by the stationary Stokes equations (2.1). It should be possible to clarify
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this point using a full two-dimensional calculation, as for example the one discussed
by Somalinga & Bose (2000). Second, one should notice that in the interface region
spurious effects emerge in the numerics. This is due to the presence of a stretched
interface with local gradients in the density field (Yuan & Schaefer 2006; Sbragaglia et
al. 2007). Neverthless, the comparison of the shape of the interfaces between LBE and
the sharp interface hydrodynamics did not reveal a great mismatch (see figures 9–11);
i.e. regarding this point the effect of spurious currents is certainly small. In order
to make progress on this issue, one should work out a better and refined numerical
scheme to reduce the spurious currents effect and check the comparison with theory
again (Cristea & Sofonea 2003; Wagner 2003; Lee & Fischer 2006; Shan 2006; Yuan
& Schaefer 2006; Sbragaglia et al. 2007).

4. Discussions and conclusions
We have developed a sharp interface theory to describe a Couette cell consisting

of two immiscible fluids. The two contact lines at the walls develop divergent viscous
stresses, and such a singularity is removed by introducing a finite slip length at the
boundaries (�s). The stationary properties of the system have been quantified in terms
of the capillary number (Ca), the viscosity ratio (χ), the microscopic wettability
(θm) and the separation of scale (λ) between the inner physics (�s) and the outer
geometry (i.e. the distance between the walls H ). The problem can be closed using
the assumption of small tilting angles at the interface (lubrication approximation),
thus determining the stationary interfaces in terms of Ca , χ , θm and λ. It is observed
that there exists a critical capillary number, Cacr , above which no stationary solution
can be found. The critical capillary number corresponds to the case in which liquid
deposition occurs on the solid: the interface is stretched to the point beyond which
it cannot sustain any longer a stationary profile and it is broken in favour of
liquid entrainment on the wall. Our analysis offers the possibility to examine this
critical capillary number in terms of all parameters, especially the viscosity ratio, thus
extending a similar analysis done in a recent paper by Jacqmin (2004). Moreover, in
the limit of small viscosity ratios, it allows our results to be compared with the recent
analysis proposed by Eggers (2004a) for the case of a plate withdrawn at a given
speed from a liquid bath. This elucidates the role of completely different geometries
in determining the critical capillary numbers.

In the second part of the paper we have studied the same system with a diffuse
interface model based on the LBE. The comparison with LBE results allows us to
consider the numerical model as the benchmark and to understand the effects of finite
thickness of the interface on global quantities, such as the critical capillary number,
as well as local ones, such as the interface shape and the velocity profiles. Good
agreement is found when the scale separation in LBE, given by the ratio of interface
thickness ξ and distance between the walls H , becomes small enough.

Extensions of LBE simulations to other geometries, as seen in the Landau–Levich
case in the presence of gravity, would allow direct comparison with experimental
results (Quéré 1991; Snoeijer et al. 2006, 2007) and also offer more physical insight
into problems that are still not completely understood, such as the importance of
roughness, contact angle hysteresis and speed dependency of the microscopic wetting
properties (Quéré 1991; Golestanian & Raphael 2003; Heine, Grest & Webb 2004;
Rame, Garoff & Willson 2004).

Very recently, a withdrawal experiment by Snoeijer et al. (2006) has been performed
and, contrary to previous experiments (Sedev & Petrov 1991), the transition to film
entrainment did not occur at the critical capillary number predicted by the theory
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(Eggers 2004a, 2005). This behaviour is due to the formation of a capillary ridge
that does not trivially match the liquid film and determines the critical speed of
entrainment. This can be related to contact angle hysteresis that has not been treated
in the continuum models; the sensitivity of Cacr with respect to θm (see also figure 3)
can also support this interpretation. Another interesting possibility would be the
introduction of a mesoscopic roughness in the numerical simulations and studying
the way this critical behaviour changes in terms of the underlying heterogeneity
(Kusumaatmaja & Yeomans 2007). One should be cautioned that such an analysis
would be limited to finite viscosity ratios, unless one is opting for more sophisticated
schemes incorporating density ratios comparable with liquid–gas interfaces used in
the experiments (Inamuro et al. 2004; Lee & Lin 2005). Moreover, the properties
of the diffuse interface models will emerge as functions of the separation of scale
λLBE : reaching extremely small values of λLBE is somewhat prohibitive because of the
extremely large resolution needed to simulate a set of scales ranging from nm to tens
of μm. In this regard, analysis similar to that presented in this paper (see § 2.2) would
help to translate the numerical observations into realistic numbers.

We are indebted to B. Andreotti, R. Benzi, J. Yeomans, H. Kusumaatmaja, F.
Toschi and S. Succi for useful and enlightening discussions.

Appendix. Matrix problem for the lubrication approximation
Here we describe in detail the calculations needed to solve the Couette problem in

the lubrication approximation. Consistent with the assumption of small tilting angles,
the vector normal to the interface is

n̂ =
1√

1 + (dh/dx)2

(
êy − êx

dh

dx

)
(A 1)

with êx and êy being Cartesian unit vectors. A zero-normal component for the left
field (similar arguments being applicable to the right one) at the interface means

ul,n|h = uy,l |h − dh

dx
ux,l |h = 0. (A 2)

Moreover from the continuity equation (2.2) we derive

uy,l |h = − d

dx

∫ h(x)

0

ux,ldy +
dh

dx
ux,l |h . (A 3)

The use of (A 3) together with (A 2) leads to

ul,n|h =
d

dx

∫ h(x)

0

ux,ldy. (A 4)

Since in the inner (outer) region of the system there is no net mass flow rate∫ h(x)

0

ux,ldy = 0

∫ H

h(x)

ux,rdy = 0. (A 5)

The six boundary conditions that we need to fix Al , Bl , pl,x , Ar , Br , pl,x are then
represented by (2.4), (2.5) and (A 5). They translate to the following system:

Al + hBl +
h2

2
pl,x − χ−1

(
Ar + hBr +

h2

2
pr,x

)
= 0; (A 6)
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Bl + hpl,x − Br − hpr,x = 0; (A 7)

Al − �sBl = μlUw; (A 8)

Ar + (H + �s)Br +

(
H 2

2
+ �sH

)
pr,x = −μrUw; (A 9)

hAl +
h2

2
Bl +

h3

6
pl,x = 0; (A 10)

(H − h)Ar +
1

2
(H 2 − h2)Br +

1

6
(H 3 − h3)pr,x = 0. (A 11)
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